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Abstract
The main purpose of this paper is to test the performance of Lie group integrators
as applied to a semi-discrete version of the KdV equation.

PACS numbers: 0230, 0220, 0260, 0270

1. Introduction

We consider the numerical approximation of the KdV equation

ut + uxxx − 3uux = 0. (1.1)

In this manuscript we will focus our attention on the Lax formulation of the equation. Consider
the Schrödinger operator

L = −D2 + u (1.2)

where D = d
dx represents differentiation with respect to the x variable. It is well known that

if u evolves according to the KdV equation then the operator L is unitarily equivalent, i.e. L
is such that

U ∗(t)L(t)U(t) = L(0) (1.3)

and U(t) is a one-parameter family of unitary operators in L2(−∞,∞). The flow L(t) is
isospectral. This can otherwise be expressed by the following equation:

Lt = [B,L] (1.4)

where B is the infinitesimal generator of the family U(t). For B = D (skew-adjoint) (1.4)
reduces to ut = ux , the infinitesimal generator of translations leaving L invariant. If we
consider

B = −4D3 + 2(uD + Du) (1.5)

equation (1.4) reduces to the KdV equation. There is a hierarchy of operators B defining
nonlinear evolutionary equations though (1.4), which leave the Schrödinger operator L

invariant. The operators L and B are self- and skew-adjoint respectively with respect to
the inner product of L2(−∞,∞). In [1] Adler described the orbit symplectic structure of
Konstant–Kirillov for the KdV equation. In his analysis, using the theory of pseudo-differential
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operators, the author identifies the formal Lie group G, the formal Lie algebra g and the Lie
coadjoint group action ofG over g∗ necessary to define the Konstant–Kirillov symplectic form.
In this context we will be mostly concerned with the analogous adjoint action.

Several authors have been recently considering the use of Lie group actions in the numerical
integration of ordinary differential equations (ODEs) on manifolds (see [14] for an overview
on the subject). The main idea of these methods is based on the assumption that the vector
field of the given differential equation can be expressed in terms of a Lie group action on
the manifold. Advancing in time the solution of a transformed problem in the Lie algebra
using a Runge–Kutta (RK) method and then transforming back the result to the manifold, it
is possible to obtain approximations of the flow that preserve the orbits. More specifically
in the case of isospectral flows the methods preserve the spectrum of the operators. In the
case of the KdV equation (and other completely integrable systems) the Lax formulation
of the equation involves infinite-dimensional operators and in practice the above-mentioned
numerical methods can be applied only after a suitable space discretization of the operators L
and B that allows us to work with finite-dimensional operators.

Semi-discretizations preserving symmetries or the Hamiltonian structure of PDEs have
been considered recently in [2, 3, 17–20].

In the KdV case one can consider semi-discretizations that describe an isospectral flow
in a finite-dimensional space. A famous example of such discretization was given by Kac and
Van Moerbeke in [15, 16]. We refer to [24] for a study of the convergence of the solutions of
the Kac–Van Moerbeke (KVM) discretization to the solutions of (1.1). In this paper we are
interested in producing discretizations in space and time of the KdV equation by applying a
numerical method to the KVM system of ODEs.

Integrable discretizations of both space and time for the KdV equation have been studied
by Hirota [13], whereas numerical methods for the time integration of isospectral flows have
been considered by Calvo and collaborators [4].

The spectrum of the discrete Schrödinger operator is in any case just a discretization of
the spectrum of L and what we are guaranteed to preserve with our time-stepping procedure
is just the discrete and obviously not the true spectrum of L.

In a more general way we are interested in finding discretizations of the operators L and
B that are respectively self- and skew-adjoint with respect to an opportune discretization of
the inner product of L2. With straightforward computation it is possible to verify that, given
φ ∈ L2, [B,L]φ = BLφ−LBφ = uxxxφ+6uuxφ and the operator [B,L] does not contain D

or powers of D. This fact is a consequence of the rules of composition of the operator D. This
feature plays an important role also in the discrete version of the problem and in the KVM
discretization it is represented by the fact that [B̃, L̃] is a matrix with the same sparsity pattern
as L̃.

We conjecture that considering restrictions of L and B to finite-dimensional subspaces of
functions in L2, and imposing certain constraints of regularity on these functions, it is possible
to define other suitable discretizations L̃ and B̃ ensuring the desired properties for D̃.

The main purpose of this paper is to test the performance of Lie group integrators as
applied to a semi-discrete version of the KdV equation, and to discuss which features of the
infinite-dimensional problem should be maintained in the semi-discrete system in order to
apply these time integration strategies.

In the next section we will give a brief introduction to the methods of integration on
manifolds based on the use of Lie group actions with particular consideration to the case of
isospectral flows and sparse matrices.

In the third and last section we will consider the application of these methods to the
discretization of the KdV equation.



The numerical integration of the KdV equation via isospectral deformations 2207

2. Methods based on Lie group actions

Consider the differential equation

y ′ = F(t, y) y ∈ M
with F(t, ·) ∈ X(M) a vector field on the manifold M; assume that

F(t, y) = λ∗(f (t, y))(y). (2.6)

Here f : R × M → g (g a Lie algebra) and λ∗ : g → X(M) and it is obtained as follows:
assume

� : G × M → M
is a Lie group action, choose

φ : g → G

a coordinate map form g to G, define

λ : g × M → M
a Lie algebra action by λ(v, p) = �(φ(v), p),

λ∗(v)(p) = d

dt

∣∣∣∣
t=0

λ(tv, p)

and f : R × M → g. We will consider cases in which g ⊂ gl(n).
Consider dφw : g → g,

dφw(v) = d

dt

∣∣∣∣
t=0

(φ(v + tw)).

Then, given p ∈ M, the vector field ϕ(t, u) = dφ−1
u (f (t, λp(u))), with λp : g → M and

λp(u) = λ(u, p) is such that

λ′
p ◦ ϕ = F ◦ λp.

As an immediate consequence if

u(t)′ = ϕ(u(t)) (2.7)

then

(λp ◦ u)′ = λ′
p ◦ u′ = λ′

p ◦ ϕ ◦ u = F ◦ (λp ◦ u).

It is possible to use an RK method for the integration for ODEs on the Lie algebra
equation (2.7) and transform the obtained approximation back to the manifold M at every
time step. This leads to the following algorithm originally due to Munthe–Kaas (MK):

Generalized RK–MK algorithm

p := yn
for i = 1 to s do

ui := h
∑

aij k̃j
ki = f (tn + cih, λ(ui, p)),
k̃i := dφ−1

ui
(ki)

end do
v := h

∑
bi k̃i

yn+1 = λ(v, p)
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where {ai,j }, i = 1, . . . , s, j � i − 1 and bi , i = 1, . . . , s are the coefficients of a classical,
explicit RK method with s stages [12]. In the previous algorithm the numerical solution is
advanced in the Lie algebra by computing v as a linear combination of the stages k̃i and
then transformed to the manifold by applying the Lie algebra action. For a more extensive
description of the RK–MK methods we refer to the original article of MK [21] and for its
generalizations to [9] and [23]. Similar strategies have been explored by Zanna in [26] and by
Diele and collaborators in [8] with particular focus on the application to isospectral flows.

Suppose now we want to apply the previous algorithm to an isospectral flow of the type

Lt = [B(L), L] (2.8)

L(0) = L0 withL an n×n symmetric matrix, L ∈ Sym(n) andB : Sym(n) → so(n); we then
need to identify the Lie group action, the map f of equation (2.6), to choose a coordinate map
and to obtain the Lie algebra action. The Lie group action we consider is the adjoint action,
B plays the role of f and given a coordinate map, local diffeomorphism φ : so(n) → SO(n),
the Lie algebra action is

λ(P, S) := φ(P )∗Sφ(P );
by differentiation one obtains that

λ∗(P )(S) = [P, S].

We recognize in (2.8) the framework required in (2.6).
Several possible choices are available for the coordinate map φ : SO(n) → so(n).

Perhaps the most natural one consists in taking φ = exp the matrix exponential, that leads to
the following expression for dφ−1

u :

d exp−1
u (v) = z

ez − 1

∣∣∣∣
adu

(v). (2.9)

For computing (2.9) usually one considers truncations of the corresponding Taylor expansion
of the same order in the step sizeh of the considered RK method. Whenn � 4, some techniques
for the exact computation of the exponential of skew-symmetric matrices are available [25];
however, the computational costs can be high and this is one of the main motivations for
considering the use of alternative coordinate maps.

Among other choices for the coordinate map φ rational maps can be considered [6],
and in particular all the diagonal Padé approximants of the exponential map are suitable.
For example if we consider φ(u) = (I − u/2)−1(I + u/2), the Cayley map, we have
dφ−1

u (v) = (I − u/2)v(I + u/2) in an explicit closed form.
A third and last option that we want to mention here is based on the composition of

elementary exponentials: one can take for example φ(u) = eu1e1 · · · euded , where e1, . . . , ed
are a basis of the Lie algebra g that in our case is so(n,R).

The straightforward computation of dφ−1
u (v) implies high computational costs, but in the

case of semi-simple Lie algebras over C it is possible to derive explicit expressions for dφ−1
u

that can be computed at a competitive cost [23]; these results do not apply in the so(n,R) case.
In this last case one can instead opt for finding cheap approximations of the correct order

for dφ−1
u (v) when u, v ∈ so(n,R). In [5] and [6] the authors propose a strategy based on

the use of compositions of elementary exponentials for constructing approximations of the
exponential map of order p in the step size that are coordinate maps in their own right. The
use of such maps combined with the same-order approximation of d exp−1

u gives a method of
order p.

For u ∈ g, and g of dimension d , let e1, . . . , ed be a basis for g, and u = ∑d
l=1 ulel

consider

φ(u) = exp (α1(u)e1) · · · exp (αd(u)ed)
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with αj : g → R if the Jacobian of [α1, . . . , αd ] is invertible for u sufficiently close to the
origin in g, φ(u) is a coordinate map. More generally consider

φ(u) = exp (U1) · · · exp (Uk)

where the {Ui}ki=1 are defined as follows: let {Si}ki=1 define a partition of the set of indices
I = {1, . . . , d}, i.e.

∪k
i=1Si = I Si ∩ Sj = O i �= j

we define now

Ui :=
∑
j∈Si

λj (u)ej

with λj : g → R. Using the Baker–Campbell–Hausdorff (BCH) formula for U1, . . . , Uk we
find Y (u) = ∑d

l=1 yl(u)el such that φ(u) = exp (Y (u)) and also in this case if for u close
enough to the origin the Jacobian of [y1, . . . , yd ] is invertible, then φ is a coordinate map.

We illustrate this strategy in the appendix with a special instance of these techniques that
is particularly interesting in the so(n,R) case.

Parametrizing the element u ∈ g with the step size h it is easy to realize that if
φ(hu) = exp (hu) + O(hp+1) it is possible to take the series of d exp−1

hu truncated at order p as
an order p approximation of dφ−1

hu .
In the case of sparse matrices, the main drawback in the application of these methods is

due to the fact that the application of w = dφ−1
u (v) with u and v sparse gives a result w of

reduced sparsity. This implies that at each time step, in the computation of the Lie algebra
action in the method, the coordinate map is applied to matrices of decreasing sparsity. To
avoid this problem it is possible to use methods that are simply based on the composition
of elementary flows, for which however the number of exponentials to be computed is much
higher than in this case [7].

3. Discrete KdV and Lie group integrators

In this section we consider the use of the methods described in the previous section in the
numerical integration of the following system of differential equations known as the KVM
equation [15]:

dRn

dt
= e−Rn−1(t) − e−Rn+1(t) (3.10)

for n = 2, . . . , N − 1 with dR1
dt = −e−R2(t) and for our purposes we assume N finite and

consider dRN

dt = e−RN−1(t), and setting ai = 1
2 e− 1

2 Ri(t) for i = 1, . . . , N and bi = aiai+1 for
i = 1, . . . , N − 1 we define the following (N + 1) × (N + 1) matrices:

L =




0 a1 0 · · · 0

a1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . aN

0 · · · 0 aN 0




B =




0 0 b1 · · · 0

0
. . .

. . .
. . .

...

−b1
. . .

. . .
. . . bN−1

...
. . .

. . .
. . . 0

0 · · · −bN−1 0 0



.

We will apply algorithm (2) to the isospectral flow

Lt = [B,L]
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Figure 1. Evolution of the one-soliton solution.

(This figure is in colour only in the electronic version, see www.iop.org)

in order to obtain a numerical approximation ofRi(t) i = 1, . . . , N that preserves the spectrum
of the operator L. We will then use the obtained approximations to derive a numerical solution
of the KdV equation.

Consider the solutions of the scaled version of (3.10) obtained by replacing Rn(t) with
rn(t) = h−2

x Rn(t/h
3
x) and with infinite n. Consider then an interpolating function rhx (x, t)

whose values in the nodes xn = nhx coincide with rn(t) and define Uhx (x + h−2
x 2t, t) :=

rhx (x, t); in [24] the author gives the details of the convergence of Uhx to the general solution
of the KdV equation.

As mentioned in the previous section different coordinate choices give rise to different
Lie group methods; in the numerical experiments we will compare the use of exp the classical
exponential map computed using the built-in function of Matlab expm and a map obtained
by symmetric composition of elementary exponentials as described in the appendix by (A.1)
and (A.2).

The coefficients of the RK method in (2) are chosen to be the coefficients of the classical
RK4 (explicit RK of order four) [12].

The map dφ−1
u for both choices of coordinate map is substituted by the order four

approximation obtained by truncation of the series:

dφ−1
u (v) = v − 1/2adu(v) + 1/12ad2

u(v) − 1/720ad4
u(v) + O(h6)

the method is implemented using the free Lie algebra strategy that reduces the number of
commutators [22]. The Lie algebra action used for advancing the solution from Ln to Ln+1 is
given byλ(v, Ln) = φ(hv)Lnφ(−hv)withφ(hv) either the exponential ofhv or a composition
of elementary exponentials given by (A.1) and (A.2).

We notice that in the case of matrices of the sparsity of B the coordinate map described
by (A.1) and (A.2) will be computed in a number of O(n2) operations; this appears to be
competitive compared with the algorithms that efficiently compute exponentials of skew-
symmetric sparse matrices and that in any case require O(n3) operations.
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Figure 2. RK4 numerical solution at t = 1.
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Figure 3. RK–MK with exponential, numerical solution at t = 1.

In figure 1 we report the evolution of one soliton computed using the RK–MK algorithm
of the previous section combined with exp as coordinate map.

In our example we took N = 65 and hx = 8/65, taking in other words the interval [−4, 4]
as our approximation of the real line. The values of the numerical solution are plotted in an
interval of amplitude 5.6616 corresponding to 47 of the 65 nodes of the space grid; the initial
space interval is [−2.83, 2.83] and it moves with the soliton; at t = 4 it is [−1.8503, 3.8113];
we integrated for t ∈ [0, 4] with 240 steps and initial value 2 sech2(x).

In figures 2–4 we compare the results obtained integrating the previous problem on the time
interval [0, 1] with three different strategies: in figure 2 the built-in function of Matlab ode45
applied to the system (3.10) with relative tolerance 1×10−9 and absolute tolerance 1×10−12;
in figure 3 the classical RK–MK method with the exponential as coordinate map and in figure 4
the RK–MK combined with the coordinate map defined by (A.1) and (A.2). In the plots the
space interval is larger compared to the previous experiment and it corresponds to 57 of the 65
nodes on the space grid.
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Figure 4. RK–MK with composition of exponentials, numerical solution at t = 1.

As we can see the two Lie group methods perform identically and both better then the
Matlab routine that implements a classical RK method. Given that the approximation of
the soliton for the KdV equation is obtained just by scaling and interpolating the numerical
solution obtained for the KVM, the figures presented are also indicative of the performance of
the methods on the KVM system.

The simulation of two interacting solitons has not been properly tested yet and in any case
it appears more difficult, numerical instability occurs for big enough t .

In [11] Goodman and Lax observed that the semi-discrete scheme of [15] coincides with
the use of a special finite-difference discretization for the conservation law

ut + ( 1
2u

2)x = 0 (3.11)

namely

d

dt
un + un

un+1 − un−1

2/
= 0. (3.12)

Using the explicit classical RK of order 4 (RK4) for integrating the system (3.11) Goodman
and Lax observed an oscillatory behaviour in the numerical solution for times t greater than a
certain critical time.

This unstable behaviour appears as a disadvantage also in our context and sets limits to
the possibility of using the KVM discretization for numerical purposes.

Our interest in investigating the KVM equation as a discretization of the KdV equation is
motivated by the fact that the KVM is a completely integrable system and can be written in
the Lax formalism, which is natural for the application of Lie group methods.

Our attempts to find alternative more stable semi-discretizations for the Lax formulation
of the KdV that maintain the geometrical properties of the infinite-dimensional problem have
for the moment not been successful.

Given the good features of pseudo-spectral methods in handling soliton equations [10],
we will try in the future to combine these semi-discretization strategies with the ideas of this
paper.
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Appendix

We here illustrate an example of a coordinate map based on the symmetric composition of
elementary exponentials.

Suppose u ∈ so(n,R) is a skew-symmetric matrix; we consider a symmetric composition
of exponentials

φ(u) = exp (U1) · · · exp (Un−1) · · · exp (U1) (A.1)

where the Ui are explicit functions of the entries of u. More precisely we express

Ui := U 0
i + U 1

i

and we now define U 0
i := uie

T
i − eiu

T
i with ui = −[0, . . . , 0, ui,i+1, . . . , ui,n]T and

ei the ith vector of the canonical basis of R
n. Analogously U 1

i := qie
T
i − eiq

T
i with

qi = −[0, . . . , 0, qi,i+1, . . . , qi,n]T and qi,j are the entries of the skew-symmetric matrix Q

defined by

Q = 1
12

n−1∑
l=2

2(ūlû
T
l − ûlū

T
l ) + 1

2 (ūlu
T
l − ulū

T
l ) (A.2)

+ 1
12

n−1∑
l=2

ul

( l−1∑
k=1

uk,luk − ǔl

)T

−
( l−1∑

k=1

uk,luk − ǔl

)
uT
l (A.3)

+ 1
12

n−1∑
l=2

1
2uT

l ul(ûle
T
l − elû

T
l ) + ǔle

T
l − elǔ

T
l (A.4)

with

eT
k ūl =

{
−uT

kul k = 1, . . . , l − 1

0 otherwise

eT
k ûl =

{
uk,l k = 1, . . . , l − 1

0 otherwise

and

eT
k ǔl =

{
uT
k ûl k = 1, . . . , l − 1

0 otherwise.

The cost of computing Q is in this case ≈5n3 flops, but if the rows of the matrix u are such
that just one element per row is nonzero then the complexity reduces to ≈5n2. This is in fact
the case of our application.

If we assume that the entries of u are of order one in a parameter h it is possible to show that
(A.1) is an approximation of order four in h of exp (u). Moreover the given explicit formula
for Q is the second term in the symmetric BCH formula for

exp (U 0
1 ) · · · exp (U 0

n−1) · · · exp (U 0
1 )

and U 0
i = uie

T
i − eiu

T
i , namely

Q = 1
12

k−1∑
l=2

[U 0
1 + · · · + U 0

l−1 + 1
2U

0
l , [U 0

1 + · · · + U 0
l−1, U

0
l ]].
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